Laboratory of Molecular Research for Solar Energy Innovations

Overview

Research interests of SOLEIL Group focus on design, synthesis & application of nanomaterials and advanced architectures for solar energy technologies and photo-driven biocatalytic  applications. However, now, it starts to be obvious that with deep knowledge on synthesis and functionalization of metal oxide nano-architectures for solar energy conversion we can start to ask new questions about underlying understanding of elementary chemical reactions and photoelectrochemical processes and finally address them by new ultrafast spectroscopic and in-situ conceptual techniques allowing to directly investigate charge transfer kinetics phenomena  We believe, that this conceptual approach to the molecular systems to identify the major bottlenecks hampering the efficiency of current solar systems has a bright future.

Research Topics:

Investigation of the combined electro-photo-reduction of CO2 at selected catalysts  taking in parallel, profit from the extra activation of the process provided by the plasmonic nanostructures

Identification and recognition of the kinetic processes governing the performance of the earth abundant materials and their integrated systems with use of the ultrafast TAS approach (combined charge carrier dynamics & kinetic analysis)

Identification & synthesis of radically new photoactive materials

Design, construction & understanding of a sensing mechanism of the photoelectrochemical biosensors based on the polycrystalline semiconductors and demonstrate a proof of concept through the quantification of the biosensing activity and efficiency of the overall PEC sensor for a number of selected bioanalytes.

Eksplorację nowych podejść do aktywacji redukcji cząsteczki CO2 wspomaganej energią słoneczną oraz kombinatoryjnymi technikami elektrochemicznymi.

  • Identyfikację, projektowanie, modelowanie, syntezę oraz wytwarzanie nanostruktur, nowych materiałów półprzewodnikowych.
  • Konstrukcję oraz charakteryzację układów do detekcji fotoelektrochemicznej biomolekuł oraz immunosensorów.

 

https://orcid.org/0000-0002-4811-1143

Renata Solarska, PhD
email: r.solarska@dev.dev.cent.uw.edu.pl/en
room: 05.55


Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode.
Szaniawska, E., Bienkowski, K., Rutkowska, I. A., Kulesza, P. J., & Solarska, R. (2018).
Catalysis Today, 300, 145-151.
Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer.
Bloor, L. G., Solarska, R., Bienkowski, K., Kulesza, P. J., Augustynski, J., Symes, M. D., & Cronin, L. (2016).
Journal of the American Chemical Society, 138(21), 6707-6710.
Plasmon resonance-enhanced photoelectrodes and photocatalysts
Augustynski, J., Bienkowski, K., & Solarska, R. (2016)
Coordination Chemistry Reviews, 325, 116-124
Highly Efficient and Stable Solar Water Splitting at (Na) WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst.
Sarnowska, M., Bienkowski, K., Barczuk, P. J., Solarska, R., & Augustynski, J. (2016).
Advanced Energy Materials, 6(14), 1600526.
Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles.
Solarska, R., Bienkowski, K., Zoladek, S., Majcher, A., Stefaniuk, T., Kulesza, P. J., & Augustynski, J. (2014).
Angewandte Chemie International Edition, 53(51), 14196-14200.
Nanoporous WO 3–Fe 2 O 3 films; structural and photo-electrochemical characterization.
Solarska, R., Bieńkowski, K., Królikowska, A., Dolata, M., & Augustyński, J. (2014).
Functional Materials Letters, 7(06), 1440006.
Microwave-assisted nonaqueous synthesis of WO 3 nanoparticles for crystallographically oriented photoanodes for water splitting.
Hilaire, S., Süess, M. J., Kränzlin, N., Bieńkowski, K., Solarska, R., Augustyński, J., & Niederberger, M. (2014).
Journal of Materials Chemistry A, 2(48), 20530-20537.
To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts?
Augustynski, J., & Solarska, R. (2013).
Catalysis Science & Technology, 3(7), 1810-1814.
Enhancement of WO3 performance through resonance coupling with Ag nanoparticles.
Solarska, R., Krolikowska, A., Bienkowski, K., Stefaniuk, T., & Augustynski, J. (2012).
Energy Procedia, 22, 137-146.
Highly efficient water splitting by a dual-absorber tandem cell
Brillet, J., Yum, J. H., Cornuz, M., Hisatomi, T., Solarska, R., Augustynski, J., ... & Sivula, K. (2012)
Nature Photonics, 6(12), 824
Metal oxide photoanodes for water splitting.
Augustyński, J., Alexander, B., & Solarska, R. (2011).
Photocatalysis, 1-38.
Nanoscale calcium bismuth mixed oxide with enhanced photocatalytic performance under visible light.
Solarska, R., Heel, A., Ropka, J., Braun, A., Holzer, L., Ye, J., & Graule, T. (2010).
Applied Catalysis A: General, 382(2), 190-196.
Tailoring the morphology of WO3 films with substitutional cation doping: effect on the photoelectrochemical properties.
Solarska, R., Alexander, B. D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M., ... & Augustynski, J. (2010).
Electrochimica Acta, 55(26), 7780-7787.
Metal oxide photoanodes for solar hydrogen production.
Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R., & Augustynski, J. (2008).
Journal of Materials Chemistry, 18(20), 2298-2303.
There are currently no open positions

 

Title  PI  Period  Source
Design, construction and investigations of earth abundant materials based heterojunctions for high efficiency solar energy conversion Renata Solarska 2018-2022  

SONATA BIS

NCN

Insight into combined electrochemical-photochemical activation of carbon dioxide Renata Solarska 2016-2019 OPUS NCN