Laboratorium Molekularnych Innowacji Słonecznych

Zarys tematyki badawczej LMIS:

Pomimo niewątpliwych sukcesów w dziedzinie energii odnawialnej, wyzwaniem nadal pozostaje wytworzenie takiego materiału, którego wydajność byłaby równa  tej osiąganej w naturalnych układach lub obliczeniowej teoretycznej, i który byłby stabilny w czasie tak, aby zapewnić długotrwałą produktywność w procesie przetwarzania energii słonecznej. Mając na uwadze powyższe wyzwanie, centralną osią badawczą Laboratorium Molekularnych Innowacji Słonecznych jest projektowanie oraz konstrukcja różnego rodzaju złącz półprzewodnikowych, które bazując na sprzężeniu własności elektronowych składowych materiałów umożliwią wzmocnienie wydajności przetwarzania energii słonecznej do innych rodzajów energii użytkowej. Z reguły, badania te, są dedykowane specyficznym zastosowaniom  tj. fotowoltaika,  ogniwa słoneczne, czujniki, termoelektryki, baterie, kondensatory oraz inne, wykorzystujące materiały nanostrukturalne. Jednak wszystkie te zastosowania oprócz tego, że polegają na zdolności pułapkowania i absorpcji światła, wzbudzaniu i dynamice transportu ładunków, mają wspólny mianownik, którym jest złącze, typu homo- hetero- lub wieloskładnikowe determinujące pracę i wydajność całego układu. Poznanie i zrozumienie procesów transportu nośników prądu w układach połączonych półprzewodników umożliwia korelację architektury układu pracującego z mechanizmem wzbudzania nośników prądu, ich zdolnością rozdziału, odbioru, pułapkowania oraz czasem życia, czyli de facto z wydajnością w kierunku pożądanego procesu. Stąd też, punktem wyjścia do badań grupy SOLEIL są badania dynamiki transportu ładunków w pojedyńczych półprzewodnikach,  a następnie rozszerzenie badań o układy połączone. Różnice w pochodzeniu nośników prądu, ich transporcie, powstawaniu krótkotrwałych stanów przejściowych, ich czas trwania, wykazane w następstwie zastosowania technik spektroskopii kinetycznej są podstawą do dalszej analizy wskazującej na mechanizm reakcji fotochemicznej oraz identyfikacji procesów limitujących wydajność złącza pracującego. Identyfikacja i przeciwdziałanie tym procesom, jest kluczowym etapem warunkującym sukces w konstrukcji układów i urządzeń efektywnie przetwarzających energię słoneczną.

Inne tematy badawcze realizowane w LMIS obejmują również:

Eksplorację nowych podejść do aktywacji redukcji cząsteczki CO2 wspomaganej energią słoneczną oraz kombinatoryjnymi technikami elektrochemicznymi.

  • Identyfikację, projektowanie, modelowanie, syntezę oraz wytwarzanie nanostruktur, nowych materiałów półprzewodnikowych.
  • Konstrukcję oraz charakteryzację układów do detekcji fotoelektrochemicznej biomolekuł oraz immunosensorów.

 

 

https://orcid.org/0000-0002-4811-1143

 

dr Renata Solarska
e-mail: r.solarska@dev.dev.cent.uw.edu.pl
pokój: 05.55


Group Leader:
dr Renata Solarska


PhD student:
mgr Adrian Dubiel
Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode.
Szaniawska, E., Bienkowski, K., Rutkowska, I. A., Kulesza, P. J., & Solarska, R. (2018).
Catalysis Today, 300, 145-151.
Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer
Bloor, L. G., Solarska, R., Bienkowski, K., Kulesza, P. J., Augustynski, J., Symes, M. D., & Cronin, L. (2016).
Journal of the American Chemical Society, 138(21), 6707-6710.
Plasmon resonance-enhanced photoelectrodes and photocatalysts
Augustynski, J., Bienkowski, K., & Solarska, R. (2016)
Coordination Chemistry Reviews, 325, 116-124.
Highly Efficient and Stable Solar Water Splitting at (Na) WO3 Photoanodes in Acidic Electrolyte Assisted by Non‐Noble Metal Oxygen Evolution Catalyst.
Sarnowska, M., Bienkowski, K., Barczuk, P. J., Solarska, R., & Augustynski, J. (2016).
Advanced Energy Materials, 6(14), 1600526.
Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles.
Solarska, R., Bienkowski, K., Zoladek, S., Majcher, A., Stefaniuk, T., Kulesza, P. J., & Augustynski, J. (2014).
Angewandte Chemie International Edition, 53(51), 14196-14200.
Nanoporous WO 3–Fe 2 O 3 films; structural and photo-electrochemical characterization.
Solarska, R., Bieńkowski, K., Królikowska, A., Dolata, M., & Augustyński, J. (2014).
Functional Materials Letters, 7(06), 1440006.
Microwave-assisted nonaqueous synthesis of WO 3 nanoparticles for crystallographically oriented photoanodes for water splitting.
Hilaire, S., Süess, M. J., Kränzlin, N., Bieńkowski, K., Solarska, R., Augustyński, J., & Niederberger, M. (2014).
Journal of Materials Chemistry A, 2(48), 20530-20537.
To what extent do the nanostructured photoelectrodes perform better than their macrocrystalline counterparts?
Augustynski, J., & Solarska, R. (2013).
Catalysis Science & Technology, 3(7), 1810-1814.
Enhancement of WO3 performance through resonance coupling with Ag nanoparticles.
Solarska, R., Krolikowska, A., Bienkowski, K., Stefaniuk, T., & Augustynski, J. (2012).
Energy Procedia, 22, 137-146.
Highly efficient water splitting by a dual-absorber tandem cell
Brillet, J., Yum, J. H., Cornuz, M., Hisatomi, T., Solarska, R., Augustynski, J., ... & Sivula, K. (2012)
Nature Photonics, 6(12), 824
Metal oxide photoanodes for water splitting.
Augustyński, J., Alexander, B., & Solarska, R. (2011).
Photocatalysis, 1-38.
Nanoscale calcium bismuth mixed oxide with enhanced photocatalytic performance under visible light.
Solarska, R., Heel, A., Ropka, J., Braun, A., Holzer, L., Ye, J., & Graule, T. (2010).
Applied Catalysis A: General, 382(2), 190-196.
Tailoring the morphology of WO3 films with substitutional cation doping: effect on the photoelectrochemical properties.
Solarska, R., Alexander, B. D., Braun, A., Jurczakowski, R., Fortunato, G., Stiefel, M., ... & Augustynski, J. (2010).
Electrochimica Acta, 55(26), 7780-7787.
Metal oxide photoanodes for solar hydrogen production.
Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R., & Augustynski, J. (2008).
Journal of Materials Chemistry, 18(20), 2298-2303.
Aktualnie brak nowych ofert pracy
 Tytuł  Kierownik  Okres  Finansowanie
 

Projektowanie, synteza oraz badania kombinatoryjne złączy wieloskładnikowych opartych na wykorzystaniu materiałów występujących powszechnie w naturze, do wydajnej konwersji energii słonecznej

Renata Solarska 2018-2022  

SONATA BIS

NCN

Aktywacja cząsteczki CO2 w procesach elektro- fotochemicznych w kierunku fotoindukowanej konwersji do węglowodorów oraz lekkich alkoholi Renata Solarska 2016-2019 OPUS NCN